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Abstract

We propose a new approach to asymmetric �rst price auctions which cir-
cumvents having to directly examine bidding strategies. Speci�cally, the ratio
of bidders�payo¤s is compared to the ratio of the distribution functions that
describe beliefs. This comparison allows a number of easy inferences. In the
existing theoretical literature, assumptions of �rst order stochastic dominance
or stronger imply that the latter ratio has very speci�c properties. Most exist-
ing results therefore follow as simple corollaries from our two main results. We
prove that �rst order stochastic dominance is necessary for bidding strategies
not to cross. When this assumption is relaxed in the numerical literature it is
done in a manner that leads to exactly one crossing. We construct examples
with several crossings. General results are provided for types of asymmetry
not studied before, including second order stochastic dominance. In this case,
the bid distributions will cross in auctions with two bidders.
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1 Introduction

Though the rules of a �rst price auction are simple, the same cannot necessarily
be said for equilibrium behavior, especially when bidders are asymmetric. In fact,
the existence of an equilibrium was not established until recently.1 Since then, a
few properties of bidding behavior have been uncovered, including, for example, the
tendency for weak bidders to bid more aggressively than strong bidders.2

When analyzing �rst price auctions it is natural to start by examining bidding
strategies directly, as is done in the existing literature. However, this approach
is made di¢ cult by the fact that equilibrium bidding strategies are derived from
a system of di¤erential equations (arising from the �rst order conditions), which
generally escapes explicit solution. In this paper, we will sidestep these di¢ culties by
exploring another method of analyzing asymmetric �rst price auctions.3 As outlined
in an earlier version of the paper, Kirkegaard (2006), a similar method can be used
to analyze asymmetric all-pay auctions as well.
Comparing bidders pairwise, we suggest focusing on the ratio of the two bidders�

expected payo¤s, which is endogenous. It turns out that it is straightforward to relate
this ratio to the ratio of the distribution functions that describe bidders�beliefs, where
the latter represents the primitives of the model. This comparison leads to insights
on how bidders�payo¤s are ranked and on how bidding strategies relate. Moreover,
we use arguments from mechanism design theory to establish that once bidders�
payo¤s have been ranked several useful inferences concerning winning probabilities
and, from there, the ex ante distributions of bids, can be made.
Intuitively, the ratio of the distribution functions is a natural measure of the

1See Lebrun (1999) and Maskin and Riley (2000b). Several papers contain examples in which
explicit derivations of bidding strategies are possible. See Vickrey (1961), Greismer et al (1967),
Plum (1992), Cheng (2006), and Kaplan and Zamir (2007). Riley and Samuelson (1981) derived
bidding strategies in the symmetric case. Marshall et al (1994) use numerical methods to estimate
bidding strategies in asymmetric auctions. Numerical methods are also used in e.g. Bajari (2001),
Gayle and Richard (2005), and Li and Riley (2006).

2See Lebrun (1999), Maskin and Riley (2000a), and, for a related point, Fibich et. al. (2002).
Maskin and Riley (2000a) also show that there is no unambiguous ranking in terms of revenue
of the �rst and second price auctions. Lebrun (1998) examines the consequences on revenue and
bidding when one buyer becomes stronger, while Cantillon (2004) compares revenue for di¤erent
degrees of asymmetry among buyers. Fibich and Gavious (2003) use perturbation methods to study
asymmetries. See Krishna (2002) for an introduction to asymmetric auctions.

3Milgrom (2004) and Hopkins (2007) consider another method of analysis. Milgrom (2004)
reproduces existing results, while Hopkins (2007) adds a new result (and, in addition, examines
all-pay auctions). We discuss the latter in Section 6. See Cheng and Tan (2007) for an application
of this method to an asymmetric common value auction.
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relative strength of the two bidders. The level of the ratio (whether it is above or
below one) reveals which bidder is stronger, i.e. who is more likely to have a higher
valuation. Likewise, the slope of the ratio shows how a bidder�s strength is changing
compared to his rival as the valuation increases. It is perhaps not surprising that
bidding behavior in the auction is determined by the relative strength of the bidders
in combination with how the relative strength evolves. In fact, the two main results
prove that the shape of the ratio of the distribution functions, as summarized by
the number of times it equals one and the number of times the slope changes sign,
provides valuable information on how payo¤s and bidding strategies compare over
the set of valuations.
The standard assumption in the existing theoretical literature on asymmetric

auctions is that the distributions that characterize bidders can be ordered according
to �rst order stochastic dominance. Equivalently, the ratio of the distribution func-
tion of two bidders is globally above or below one. To further re�ne the results, the
stronger assumption of reverse hazard rate dominance is also often imposed. The
latter assumption is equivalent to the assumption that the ratio of the distribution
functions is monotonic. Thus, the standard assumptions imply the ratio of the dis-
tribution functions have very speci�c properties. In contrast, the method proposed
here allows us to obtain a number of results for arbitrary shapes of this ratio. In
other words, we are not constrained to the usual type of asymmetry.
In summary, the contribution of the paper is twofold. First, a new approach to

asymmetric �rst price auctions is proposed. Second, this paper appears to be the �rst
to systematically analyze bidding behavior in situations of asymmetry not described
by �rst order stochastic dominance, or stronger. Hence, several new results are also
presented.
However, the approach taken here highlights the consequences of the standard

assumptions. Thus, to demonstrate the usefulness of the approach, we reiterate many
of the most important existing results, and o¤er new and simpler proofs of these.
Hence, the paper also serves to synthesize and unify the literature on asymmetric �rst
price auctions. For instance, the winning probabilities mentioned earlier will inform
us of bidders�preferences for di¤erent auction formats, and the type of competition
they face. Incidentally, we would argue the winning probabilities are interesting in
their own right, yet the standard approach reveals little about these.
One of the most signi�cant results of the current literature is that reverse hazard

rate dominance is su¢ cient to get behavior where one bidder bids consistently more
aggressively than another. In this paper we add the complementary result that
�rst order stochastic dominance is necessary for this outcome. Kaplan and Zamir
(2007) have provided an analytical example of an asymmetric auction where bidding
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strategies cross. Gayle and Richard (2005) supply a numerical example with the same
property. The common feature is that �rst order stochastic dominance is violated.4

In fact, we show that the number of times bidding strategies cross is bounded
above by the number of stationary points of the ratio of the distribution functions.
We also establish su¢ cient conditions under which the number of crossings equals this
upper bound. Moreover, all existing classes of numerical examples are shown to imply
ratios with at most one peak. Thus, with the current speci�cations, the numerical
literature will be unable to provide examples with several crossings. However, we
show that it is straightforward to construct examples in which bidding strategies
cross several times.
The other existing major result is that �rst order stochastic dominance imply

that the equilibrium bid distributions are also characterized by �rst order stochastic
dominance. In other words, if the distributions from which valuations are drawn do
not cross, then bid distributions will not cross either.
Arguably, the natural next step would be to examine second order stochastic

dominance. Notice that the two distribution functions will cross if one distribution
second order stochastically dominates the other, but �rst order stochastic dominance
does not apply. For example, this holds if one distribution function is a mean preserv-
ing spread over the other, which describes a situation where one bidder�s valuation is
less �predictable�than that of the competition. In the two-bidder case, we show that
second order stochastic dominance without �rst order stochastic dominance imply
that bid distributions cross. We provide conditions under which they cross exactly
once.5

We consider the proposed method of analysis to be complementary to the stan-
dard approach. Indeed, in some cases we combine the two methods. Though we
provide new results as well as new proofs of many existing results, we ignore the
important questions of existence, uniqueness and revenue comparison of di¤erent
auction formats. These di¢ cult questions have been tackled by Lebrun (1999, 2006)
and Maskin and Riley (2000a, 2000b, 2003).
The paper is organized as follows. The model is presented in Section 2, and some

preliminary results on how payo¤s, bids, winning probabilities and bid distributions
relate are o¤ered. In Section 3, the core of the paper, bidders are compared pairwise,

4Indeed, Maskin and Riley (2000a, footnote 14)) contain an example demonstrating that bidding
strategies may cross even when �rst order stochastic dominance is satis�ed. We explain this result
in Section 3, where we consider a class of situations encompassing Maskin and Riley�s (2000a)
example. In conclusion, �rst order stochastic dominance is necessary but not su¢ cient for one
bidder to be consistently more aggressive than another.

5This result is complementary to one in Hopkins (2007). He obtains a similar result, under
quite di¤erent assumptions. See Section 6.
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using the method described above. This section contains the main results, and shows
how the most signi�cant existing results follow as simple corollaries of these. Section
4 details how many, if not most, of the remaining existing results can be proven
di¤erently, and arguably more easily, using the method proposed here. In Section
5 we focus on the case where distribution functions cross, leading to new results.
It is shown how the new theoretical results lead to precise predictions on bidding
strategies in the class of examples that are currently used in the numerical literature.
In Section 6 we discuss the consequences of letting the support of valuations di¤er
among bidders and describe how the example of Kaplan and Zamir (2007) as well as
the result in Hopkins (2007) �t in. Section 7 concludes.

2 Model and preliminaries

We consider a �rst price auction with n risk neutral and potentially asymmetric
bidders with independent private values. Bidder i draws his valuation, v, from an
atom-less distribution function, Fi, on v 2 [0; v], i = 1; :::; n. The density, fi, is
assumed to be continuous, as well as �nite and strictly positive on (0; v]. �i denotes
the expected value of bidder i�s valuation. The assumption of a common support is
made primarily for expositional simplicity; it is relaxed in Section 6.
We let bi(v) denote bidder i�s equilibrium bidding strategy, and we let qi(v) denote

the equilibrium probability that bidder i with valuation v will win the auction when
following his equilibrium strategy.6

In this environment, Lebrun (1999) and Maskin and Riley (2000b) have shown
that an equilibrium exists, and that bidding strategies are continuous and strictly
increasing in valuations.7 Moreover, bidding strategies are di¤erentiable on (0; v].
Finally, Lebrun (1999) has shown that bi(0) = 0, implying that qi(0) = 0, for all i,
i = 1; 2; :::; n. Since bi(v) is increasing and di¤erentiable on (0; v], so is qi(v). We
will take these relatively intuitive properties as given, and examine other properties
of the �rst price auction.
We devote the remainder of this section to some preliminary results concerning

the relationships between a given bidder�s payo¤, his bid, and the probability that
he will win the auction. We also discuss what inferences can be made from how

6Hence, qi(v) depends on the equilibrium bid of bidder i and the equilibrium bidding strategies
of bidder i�s rivals.

7Lebrun (1999) also addresses uniqueness, as do Maskin and Riley (2003). If there is a reserve
price, the equilibrium is unique. The same holds in a second price auction, as shown by Blume and
Heidhues (2004). Lebrun (2006) establishes uniqueness under the condition that Fi is log-concave
at v = 0 for all i, i = 1; 2:::; n.
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the bidder�s payo¤ compare to the payo¤ of a rival. In Sections 3 through 6 the
interaction of di¤erent bidders is then examined.
In the following, bidder i is said to be consistently better o¤ than bidder j if

his expected payo¤ is higher for all interior valuations, EUi(v) > EUj(v) for all
v 2 (0; v). Similarly, bidder i is consistently more aggressive if he submits higher
bids for all interior valuations, bi(v) > bj(v) for all v 2 (0; v).

2.1 Payo¤s, bids, and winning probabilities

There are two ways to derive expected payo¤ to a given bidder, both of which are
useful. It is straightforward to see that, in equilibrium, bidder i with valuation v has
expected payo¤ of

EUi(v) = (v � bi(v)) qi(v), (1)

since his payo¤ is v � bi(v) if he wins, which occurs with probability qi(v).
However, inspired by Myerson�s (1981) mechanism design method, it is useful

to approach expected payo¤ from a di¤erent angle. If bidder i with valuation v
chooses to bid bi(z), his payo¤ will be (v � bi(z))qi(z). Since he submits the bid
which maximizes his payo¤, we can write

EUi(v) = max
z
(v � bi(z))qi(z):

As bidder i with valuation v bids bi(v) in equilibrium, the problem is maximized at
z = v.8 This holds for arbitrary v, and we can now use the Envelope Theorem (while
considering v to be a parameter), to conclude that

EU 0i(v) = qi(v): (2)

It follows that expected payo¤ can also be expressed as

EUi(v) =

Z v

0

qi(x)dx:
9 (3)

We will use (2) and (3) extensively in the following.
By comparing (1) and (3), the link between winning probabilities and bids be-

comes apparent,

bi(v) = v �
Z v

0

qi(x)

qi(v)
dx: (4)

8That is, in equilibrium the buyer submits the bid he is �supposed�to submit given his valuation.
Deviating to another bid, or behaving as if his valuation was di¤erent, is not pro�table.

9(2) and thus (3) can also be established by methods that do not require di¤erentiability of
qi(v). Notice that the constant of integration is zero, as a buyer with valuation 0 has payo¤ 0.
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Clearly, bidder i with valuation v bids below his valuation, a phenomenon usually
referred to as bid shading.
Lebrun (1999) has also shown that the bid submitted by a bidder with valuation

v is the same for all bidders, which has important implications for the following
analysis.10 Let b denote this common maximal bid. Our �rst result then follows
immediately from (3).

Proposition 1 In a �rst price auction, bidder i will never win consistently more
often than bidder j, i 6= j, regardless of Fi and Fj. That is, it is not possible for
qi(v) > qj(v) for all v 2 (0; v).

Proof. Since the highest bid is the same among all bidders, it follows that qi(v) = 1
for all i, and that bidders with valuation v are equally well o¤, or, for j 6= i,Z v

0

qi(x)dx = EUi(v) = v � b = EUj(v) =
Z v

0

qj(x)dx: (5)

It follows from (5) that it is not possible for bidder i to win consistently more often
than bidder j, or qi(v) > qj(v) for all v 2 (0; v). If this was the case, the term on the
far left in (5) would strictly exceed that on the far right, giving rise to a contradiction.
Hence, qi and qj either coincide, as is the case with symmetric bidders, or cross at
least once.11

2.2 Ranking payo¤s and bounding winning probabilities

In the following we will examine the inferences that can be made by comparing the
payo¤s of two bidders, bidder i and bidder j. To begin, de�neH(b) as the distribution
function of the highest bid among the n�2 rivals to bidder i and bidder j. Thus, H(b)
summarizes the relevant information concerning the remaining bidders. Moreover,

10See also Maskin and Riley (2003, Lemma 10). Since this plays an important role in the
following, we prove it here. By contradiction, assume that b1(v) � b2(v) � ::: � bn(v), with at
least one strict inequality. Then, since it is supposedly optimal for bidder n to bid bn(v) when his
valuation is v, we conclude his equilibrium payo¤ is no smaller than v � b1(v), the payo¤ he would
get from imitating bidder 1. This coincides with the equilibrium payo¤ to bidder 1 with valuation
v, and so in turn can be no smaller than what bidder 1 would get from bidding bn(v). However,
if bidder 1 bids bn(v), he earns strictly higher payo¤ than if bidder n were to bid bn(v), i.e. his
equilibrium payo¤ is higher than bidder n�s equilibrium payo¤. The reason is that a bid of bn(v) is
sure to beat bidder n, but not bidder 1. Consequently, we have a contradiction.

11Lebrun (1999) shows that symmetric buyers must use the same strategy in equilibrium. See
also Section 3.
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de�ne qji (v) as the probability that bidder i with valuation v outbids bidder j, and
de�ne qij(v) analogously. Then, qi(v) = H(bi(v))q

j
i (v), i.e. bidder i with valuation v

wins if he outbids bidder j, as well as everybody else. Hence, bidder i�s equilibrium
payo¤ can be written

EUi(v) = (v � bi(v))H(bi(v))qji (v): (6)

In equilibrium, bidder imust be at least as well o¤submitting his equilibrium bid,
bi(v), as the equilibrium bid of bidder j, bj(v). If he bids bj(v) he outbids bidder j if
bidder j�s valuation is below v, which occurs with probability Fj(v). Consequently,
it must be the case that

EUi(v) � (v � bj(v))H(bj(v))Fj(v); (7)

and reversing the roles of i and j implies

EUj(v) � (v � bi(v))H(bi(v))Fi(v): (8)

Assume now that there is a valuation v, v 2 (0; v), for which EUi(v) > EUj(v).
Combining the above results allows the inference that

(v � bi(v))H(bi(v))qji (v) = EUi(v) > EUj(v) � (v � bi(v))H(bi(v))Fi(v);
or, equivalently, that qji (v) > Fi(v). If bidder i is better o¤ than bidder j for all
v 2 (0; v), a bound on qij can also be obtained, as demonstrated below. These
bounds on the winning probabilities will play a large role in many of the results that
follow.

Lemma 1 If EUi(v) > EUj(v) for some v 2 (0; v) then qji (v) > Fi(v). Moreover, if
EUi(v) > EUj(v) for all v 2 (0; v) then qij(v) < Fj(v) for all v 2 (0; v).

Proof. The �rst part was proven above. If EUi(v) > EUj(v) for all v 2 (0; v), the
�rst part implies that bidder i with valuation v submits the same bid as bidder j
with some valuation z, where qji (v) = Fj(z) > Fi(v) (such a z exists and is unique
since bidding strategies are continuous and monotonic and the range of bids is the
same for both bidders). From bidder j�s point of view, this implies that if he has
valuation z, he will bid the same as bidder i with valuation v, and thus outbid bidder
i with probability qij(z) = Fi(v) < Fj(z).
Lemma 1 is useful for several reason, one of which we explore next. The proba-

bility that bidder i outbids bidder j is intimately linked to how the strategies of the
two bidders compare. Following Maskin and Riley (2000a), de�ne pi(b) and pj(b) as
the ex ante probability that bidder i and bidder j, respectively, submits a bid below
b. In other words, pi(b) is the ex ante distribution function of bidder i�s bid. Lemma
1 can then alternatively be expressed in terms of these distributions.
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Proposition 2 For any v 2 (0; v), if EUi(v) > EUj(v) then pi(b) < pj(b) at b =
bi(v) and if pi(b) < pj(b) at b = bj(v) then EUi(v) > EUj(v). Moreover, EUi(v) >
EUj(v) for all v 2 (0; v) if, and only if, pi(b) < pj(b) for all b 2 (0; b) (pi �rst order
stochastically dominates pj).

Proof. Since bi(v) is strictly increasing, Fi(v) coincides with the ex ante probability
that bidder i bids below bi(v). Likewise, q

j
i (v) is the probability that bidder i outbids

bidder j with a bid of bi(v), i.e. it is the ex ante probability that bidder j bids below
bi(v). It follows that if EUi(v) > EUj(v) then, by Lemma 1,

pj(bi(v)) = Pr (j bids below bi(v)) = q
j
i (v) > Fi(v) = Pr(i bids below bi(v)) = pi(bi(v)):

(9)
Intuitively, if bidder i is better o¤ than bidder j in equilibrium, it must hold that
bidder i wins more often by bidding bi(v) than bidder j would have by imitating
bidder i and also submitting bi(v). If EUi(v) > EUj(v) for all v 2 (0; v) then (9)
holds for any v, or, equivalently, for any b 2 (0; b).
The relationship between bid distributions and payo¤s goes in the other direction

as well. Speci�cally, if pj(bj(v)) > pi(bj(v)) bidder i could ensure himself a payo¤
higher than what bidder j experiences by imitating bidder j with a bid of bj(v).
Hence, bidder i with valuation v is strictly better o¤ than bidder j with valuation v.
Of course, if this holds for all b 2 (0; b) then bidder i is consistently better o¤, i.e.
better o¤ for all valuations. In this case, the distribution of bids bidder j faces �rst
order stochastically dominates the one bidder i faces, which con�rms bidder j must
be worse o¤.
Proposition 2 illustrates one of the di¤erences between the approach in this paper

and the standard approach. We examine payo¤s and use this to inform us about bid
distributions. The standard approach starts by examining bid distributions directly.
This could then subsequently be used to make inferences concerning payo¤s, but this
is usually omitted.
Consider now the special case with exactly two bidders in the auction. If bidder

i is consistently better o¤ than bidder j, it must necessarily be the case that bidder
i is �stronger in expectation�, i.e. �i > �j.

Lemma 2 If n = 2 and EUi(v) > EUj(v) for all v 2 (0; v) then �i > �j.

Proof. If n = 2 then qi(v) = q
j
i (v). If EUi(v) > EUj(v) for all v 2 (0; v) Lemma

1 in conjunction with (5) would imply the following relationship between payo¤ to
bidders with valuation v,Z v

0

Fi(x)dx <

Z v

0

qi(x)dx = EUi(v) = EUj(v) =

Z v

0

qj(x)dx <

Z v

0

Fj(x)dx: (10)
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As is well-known, integration by parts reveals thatZ v

0

Fi(x)dx = v � �i.

Consequently, if bidder i is consistently better o¤ than bidder j it necessitates that
bidder i has a higher expected valuation than bidder j, �i > �j. Otherwise, (10)
would produce a contradiction.

3 Comparing bidders: Beliefs, payo¤s, bids

As in Section 2.2 we focus on a pairwise comparison of bidders. In Section 2.2 we
explored some of the inferences that can be made if it is known that bidder i is better
o¤ than bidder j. We now investigate under what conditions bidder i is better o¤
than bidder j. The approach we suggest also enables us to establish conditions under
which bidder i bids more aggressively than bidder j.
Perhaps unsurprisingly, the beliefs bidders have about each other, summarized

by the distribution functions, play a dominant role in determining who is better o¤
and who is more aggressive. One possible way of comparing bidder i�s beliefs about
his rival with bidder j�s beliefs about his rival would be to consider the ratio

Fi;j(v) �
Fj(v)

Fi(v)
; v 2 (0; v]: (11)

Hence, Fi;j measures the relative strength of bidder i compared to bidder j. For
example, if Fi �rst order stochastically dominates Fj, or Fi(v) < Fj(v) for all v 2
(0; v), the ratio is strictly above 1 in the interior. In this case bidder i is stronger
because he is more likely to have a high valuation.
First order stochastic dominance is assumed in virtually the entire existing theo-

retical literature on asymmetric �rst price auctions. Indeed, the stronger assumption
that the ratio is strictly decreasing is often imposed, or that

fi(v)

Fi(v)
>
fj(v)

Fj(v)
for all v 2 (0; v]; (12)

meaning that Fi dominates Fj in terms of the reverse hazard rate. When Fi;j is
decreasing, bidder i�s relative strength is diminishing with the valuation. In other
words, the slope of Fi;j measures how the relative strength is changing.
One of the advantages of the approach presented below is that it makes it (for-

mally and visually) obvious why these assumptions drive the existing results, and why
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the stronger assumption is often imposed. In addition, it becomes straightforward
to derive results for cases where Fi;j is not as well-behaved as under the standard
assumptions. The number of peaks of the function and the number of times it equals
1 are important factors in predicting how payo¤s and bids relate.
Turning to a comparison of bidder i�s payo¤ with that of bidder j we de�ne

Ri;j(v) �
EUi(v)

EUj(v)
=
(v � bi(v))H(bi(v))qji (v)
(v � bj(v))H(bj(v))qij(v)

; (13)

as the ratio of payo¤s, where v 2 (0; v]. It is useful to remember that the bidders are
equally well o¤ at v, or Ri;j(v) = 1. At v, Fi;j is also 1, so the two functions coincide
at v.
Lemma 3 and Figure 1 (a) show how Ri;j and Fi;j compare elsewhere. The

important point is that if Ri;j is above Fi;j then Ri;j is increasing. If Ri;j is below Fi;j
then Ri;j is decreasing. Given that Fi;j is �xed, these properties can then be used to
infer how Ri;j must behave. Figure 1 (b) describes two possible paths that Ri;j may
take; they both have the attributes just mentioned.
Incidentally, it is also the case that if Ri;j is above Fi;j then bidder i is more

aggressive than bidder j, bi > bj.

-

6

v̂1 x2v̂2 v̂3x1v

Fi;j(v) Fi;j(v)

Ri;j(v)

R0i;j(v) < 0; bj(v) > bi(v)

R0i;j(v) > 0; bi(v) > bj(v)

1 1

v
-

6

v v

(a) Comparing Ri;j and Fi;j (b) Two possible paths for Ri;j

Figure 1: Comparing Ri;j and Fi;j, and two paths consistent with Lemma 3.

Lemma 3 For any v 2 (0; v], Ri;j(v) >;=; < Fi;j(v) () bi(v) >;=; < bj(v) ()
R0i;j(v) >;=; < 0.
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Proof. If bidder i and bidder j bid the same in equilibrium, bi(v) = bj(v), then
qji (v) = Fj(v) and qij(v) = Fi(v). In this case, Ri;j(v) = Fi;j(v), by (13). On the
other hand, if bidder i is more aggressive than bidder j, bi(v) > bj(v), the observation
that qij(v) < Fi(v) combines with (7) to yield the conclusion

Ri;j(v) =
(v � bi(v))H(bi(v))qji (v)
(v � bj(v))H(bj(v))qij(v)

>
(v � bj(v))H(bj(v))Fj(v)
(v � bj(v))H(bj(v))Fi(v)

=
Fj(v)

Fi(v)
;

or Ri;j(v) > Fi;j(v). The inequality is reversed if bidder i is less aggressive than
bidder j, bi(v) < bj(v), since in this case (8) and q

j
i (v) < Fj(v) produce the result.

In summary, Ri;j(v) > Fi;j(v) if, and only if, bi(v) > bj(v). Moreover,

R0i;j(v) =
EU 0i(v)EUj(v)� EU 0j(v)EUi(v)

EUj(v)2
=
qi(v)qj(v) [bi(v)� bj(v)]

EUj(v)2
; (14)

where the last equality follows from (1) and (2). Hence, R0i;j(v) > 0 if, and only
if, bi(v) > bj(v). Combined with the previous result the implication is that Ri;j is
strictly increasing if it is above Fi;j, and strictly decreasing if it is below Fi;j. At any
point where Ri;j coincides with Fi;j the slope of the former must be zero.
Depending on the shape of Fi;j, Lemma 3 will permit Ri;j only a limited number

of �paths�through (0; v], or, in other words, Ri;j can take only a certain number of
shapes or forms to be consistent with Lemma 3. This, in turn, allows predictions on
the relative payo¤s and bids of the two bidders, from which further inferences can
be drawn, as demonstrated in Section 2.2.
For example, consider the special case in which the two bidders are symmetric,

Fi = Fj. Then, Fi;j(v) = 1 for all v 2 (0; v]. If bidder i, say, bids more aggressively
than bidder j for some valuation v, then Ri;j(v) > Fi;j(v) by Lemma 3. Furthermore,
R0i;j(v) > 0, meaning that as we move to the right Ri;j remains above Fi;j and is ever
increasing. However, this is impossible since we require that Ri;j and Fi;j terminate
at the same point, Ri;j(v) = 1 = Fi;j(v). Thus, symmetric bidders must be equally
aggressive; they must use symmetric strategies. See Lebrun (1999) for an alternative
proof.
The remainder of this section is dedicated to establishing general results concern-

ing payo¤s and bids when bidders are asymmetric. In Sections 4 and 5 particular
types of asymmetry are examined.
For expositional simplicity, it is assumed that any stationary point of Fi;j (should

one or more exist) is a strict local maximum or minimum. That is, there are no
saddle points, and no intervals over which Fi;j is �at. We let m denote the number of
stationary points on (0; v). Notice that m equals the number of times the derivative
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of Fi;j changes sign, i.e. it is the number of intervals on which the derivative has the
same sign, less one. If m > 0, we let bv1; bv2; :::; bvm list the interior valuations, from
smallest to largest, where Fi;j is locally maximized or minimized. Letting bv0 = 0 andbvm+1 = v, we can then partition the interval (0; v] into m+ 1 subsets,

(0; v] = [mk=0(bvk; bvk+1] = (0; bv1] [ (bv1; bv2] [ ::: [ (bvm; v]; (15)

such that Fi;j is monotonic on each subset. In other words, the relative strength of
bidder i is increasing or decreasing on each subset.
Without loss of generality, we arrange the two bidders such that Fi;j approaches

one from above as v approaches v, as in Figure 1. That is, bidder i is the bidder who
is �stronger near the top�, meaning that he is more likely to have a high valuation
as 1� Fi(v) > 1� Fj(v) if v is close to v, or fi(v) > fj(v).
Let c denote the number of times Fi;j equals 1 on (0; v), and note that c equals

the number of intervals over which Fi;j is either above or below one, less one. If c > 0
we let x1; x2; :::; xc list the valuations, from smallest to largest, where Fi;j crosses 1,
and let x0 = 0 and xc+1 = v. We will refer to bidder i as locally strong and bidder j
as locally weak at v whenever Fi;j(v) > 1. If Fi;j(v) < 1 bidder i is locally weak and
bidder j locally strong. We can now partition the interval (0; v] into c+ 1 subsets,

(0; v] = [ck=0(xk; xk+1] = (0; x1] [ (x1; x2] [ ::: [ (xc; v]; (16)

such that Fi;j is either above or below one on each subset. Hence, bidder i is locally
stronger or locally weaker than bidder j on alternating subsets.
Together, m and c summarize the key properties of the competitive environment

as described by Fi;j. In Figure 1, m = 3 and c = 2. If Fi �rst order stochastically
dominates Fj then c = 0. If, moreover, Fi dominates Fj in terms of the reverse
hazard rate then m = 0 as well. In this paper, we generalize to allow m and c to take
any �nite number, and show that existing results generalize in natural directions. It
is always the case that m � c.

3.1 Comparing payo¤s

By de�nition, bidder i with valuation v is as well o¤ as bidder j with valuation v
whenever Ri;j(v) = 1. Knowing that Ri;j(v) = 1, we ask how many times Ri;j(v) can
cross 1 on (0; v), i.e. how many times bidder i can switch from being better o¤ than
bidder j to worse o¤. The answer follows straightforwardly from Lemma 3.

Theorem 1 EUi(v) = EUj(v) or Ri;j(v) = 1 no more than c times on (0; v). More
concretely, Ri;j(v) = 1 at most once on each interval of the form (xk; xk+1] where
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bidder i is locally strong or weak. Moreover, Ri;j(v) > 1 or EUi(v) > EUj(v) for all
v 2 (xc; v).

Proof. Ri;j can cross one at most once on each interval of the form (xk; xk+1].
Consider, for instance, the interval (0; x1) in Figure 1, where Fi;j is above one (because
c is even). If Ri;j(v) = 1 somewhere on (0; x1), Ri;j(v) must be below Fi;j(v) and it
follows that R0i;j(v) < 0, by Lemma 3. Hence, Ri;j(v) = 1 for at most one v 2 (0; x1).
Indeed, if Ri;j(v) = 1 for some v 2 (0; x1) it must be the case that Ri;j is strictly
decreasing and below Fi;j on (v; x1), implying that Ri;j cannot cross one at x1.
Conversely, should Ri;j equal 1 at x1 it cannot have crossed 1 on (0; x1). Hence,
there is at most one crossing on (0; x1) [ fx1g = (0; x1]. Repeating the argument,
there is at most one crossing on (x1; x2) [ fx2g = (x1; x2], and so on. It follows
that there are at most c crossings on (0; xc]. Regarding the last interval, (xc; v], we
already know that Ri;j(v) = 1, which implies that Ri;j cannot equal one on (xc; v) as
well. It follows that Ri;j(v) converges to 1 from above as v goes to v.
We can add more details to Theorem 1 by observing that if Ri;j = 1 somewhere in

the interior of an interval where bidder i is locally strong (Fi;j > 1) then Ri;j would
cross 1 from above. That is, the strong bidder would be better o¤ than the weak
bidder at the beginning of the interval, where his relative strength is increasing, and
worse o¤ at the end of the interval, where his relative strength is diminishing.
Notice that if c = 0 (�rst order stochastic dominance), then Ri;j(v) > 1 for

all (0; v).12 Given the emphasis on winning probabilities in Section 2, Proposition 3
reiterates and reformulates this result. Notice that qi can be likened to a distribution
function, as it ranges from 0 to 1, and is increasing.

Proposition 3 Assume c = 0 (�rst order stochastic dominance). Bidder i is con-
sistently better o¤ than bidder j, or EUi(v) > EUj(v) for all v 2 (0; v). In other
words, qi is a mean preserving spread over qj. That is,Z v

0

qi(x)dx >

Z v

0

qj(x)dx (17)

for all v 2 (0; v), with equality at the endpoints.

(17) implies that qi(v) < qj(v) when v is su¢ ciently close to v, i.e. the strong
bidder wins less often contingent on a high valuation. Intuitively, it is relatively less
likely that the weak bidder has a high valuation, and so it is pro�table for the strong

12If, in addition, m = 0 (reverse hazard rate dominance) then Ri;j(v) is strictly decreasing on
v 2 (0; v) and bounded between 1 and Fi;j(v). See Theorem 2 in the next section.
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bidder to shade his bid more if his valuation is high. Hence, in the unlikely event
that the weak bidder has a high valuation, he is more likely to win.
When c = 0, Propositions 2 and 3 imply that the distribution of bidder i�s bid �rst

order stochastically dominates the distribution of bidder j�s bid. This is arguably
one of the most signi�cant results of the existing literature.13,14

Corollary 1 If c = 0 (Fi �rst order stochastically dominates Fj) then pi(b) < pj(b)
for all b 2 (0; b) (pi �rst order stochastically dominates pj).

Turning to the possibility that c > 0, the last part of Theorem 1 means that the
bidder who is strong near the top, bidder i, is also better o¤ near the top. However,
it is possible that bidder i is not consistently better o¤.
As an example with c > 0, Figure 1 (b) replicates Figure 1 (a) but overlays it

with two qualitatively di¤erent possible paths for Ri;j that is consistent with Lemma
3 (there are other possible paths). As implied by Theorem 1, Ri;j crosses 1 zero, one
or two times on the interior (the two paths in Figure 1 (b) illustrate the extreme
cases with no or two crossings).
While Theorem 1 gives only an upper bound on the number of crossings, it is

possible in some circumstances to narrow down the number of possibilities substan-
tially. For example, if n = 2 and �i � �j then Ri;j must cross 1 at least once on
(0; v), by Lemma 2, thus ruling out one of the paths depicted in Figure 1 (b). Recall
the important implication that when Ri;j crosses 1, the bid distributions, pi and pj,
must also cross (Proposition 2).
An alternative approach would be to attempt to pin down the properties of Ri;j

as v converges to 0. Assuming densities are �nite and strictly positive at v = 0,
Fibich et al (2002) study the �rst order conditions as v ! 0. As mentioned earlier,
it is known that bidding strategies are di¤erentiable on (0; v]. However, it does
not appear to have been proven that the limit of the derivative exists as v ! 0.

13As mentioned, Proposition 2 goes both ways. Hence, from the known result that pi(b) < pj(b)
for all b 2 (0; b) if Fi(v) < Fj(v) for all v 2 (0; v), it is possible to conclude that bidder i is
consistently better o¤ than bidder j (though this does not appear to have been explicitly stated
before). However, any result on how payo¤s and bid distributions compare for the case of c > 0 is
new. See also Section 5.

14Although winning probabilities as a function of valuation intersect, the strong bidder is still
more likely, ex ante, than the weak bidder to win the auction. To see this, start with the following
thought experiment. Rather than drawing a valuation from the distribution function (and subse-
quently calculating the bid), we can think of a bidder as drawing a bid from the distribution of
bids (and later inferring the valuation, if necessary). This, of course, leads to the insight that the
strong bidder is more likely to �draw�, or submit, a high bid, and it follows that the strong bidder
is more likely than the weak bidder to win the auction ex ante.
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Nevertheless, Fibich et al (2002) use L�Hospital�s rule to investigate the properties of
the derivative of the bidding strategy in the limit. The appropriate interpretation of
their result therefore seems to be that if the limit of the derivative exists as v ! 0,
then this limit is the same for all bidders. This, in turn, would imply that bidding
strategies are virtually identical when v is small.15 In this case, it is easy to show
that Ri;j and Fi;j would converge to the same number as v ! 0. In the example in
Figure 1, we would therefore conclude that Ri;j(v) = 1 either zero or two times in
the interior. If it is also the case that n = 2 and �i � �j, it must therefore be the
case that Ri;j(v) = 1 twice in the interior, meaning that bidder i is better o¤ than
bidder j for low and high valuations, but worse o¤ for intermediate valuations.
There are two reason to be careful about relying too much on the arguments in the

previous paragraph. The �rst is the use of L�Hospital�s rule. The second is the fact
that there are many compelling examples in which densities are not strictly positive
or �nite at v = 0. For example, if a set of potential bidders collude and bidder i is
the member with the highest valuation, bidder j would perceive the density of the
cartel representative to be zero even if the densities of the individual cartel members
are strictly positive.16

Moreover, many commonly used distributions do not have strictly positive or
�nite densities at v = 0. Examples include the beta distribution, the Weibull dis-
tribution, the log-normal distribution and the commonly used power distribution.
Plum (1992) and Cheng (2006) analytically derive bidding strategies in di¤erent
classes of situations where bidders draw valuations from power distributions (over
di¤erent supports). It is also interesting to note that a signi�cant portion of the
numerical work on asymmetric auctions focusses on these types of examples. For in-
stance, Marshall et al (1994) consider power distributions. Gayle and Richard (2005)
consider Weibull distributions and log-normal distributions, although the latter are
truncated away from zero.

3.2 Comparing bids

Lemma 3 shows that the bids of bidder i and bidder j can be compared by comparing
Ri;j with Fi;j. Whenever the two curves coincide, the bids coincide as well, and vice
versa. Following the approach in the previous subsection, we thus seek to determine
the maximal number of crossings between Ri;j and Fi;j. In this case the number of

15See Lebrun (2006, footnotes 2 and 8) for a discussion of the problems with this approach, and,
in particular, the use of L�Hospital�s rule.

16If buyer 1 and 2 collude, the distribution of the highest valuation among these two bidders is
F1(v)F2(v), the density of which is zero at v = 0 if f1(0) and f2(0) are �nite.
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peaks of Fi;j, m, emerges as an upper bound. Moreover, a lower bound is easily
added when c > 0.

Theorem 2 bi(v) = bj(v) or Ri;j(v) = Fi;j(v) no more than m times on (0; v). More
concretely, Ri;j(v) = Fi;j(v) at most once on each interval of the form (bvk; bvk+1] where
bidder i�s relative strength is increasing or decreasing. Moreover, Ri;j(v) < Fi;j(v) or
bi(v) < bj(v) for all v 2 (bvm; v).17 Finally, if c > 0 there exists at least one valuation,
v 2 (0; v), for which Ri;j(v) = Fi;j(v).
Proof. Ri;j can cross Fi;j at most once on each interval of the form (bvk; bvk+1), because
at any point of crossing Ri;j would be �at, by Lemma 3, whereas Fi;j is strictly
monotonic with a non-zero derivative on the interval. Replicating the argument from
the proof of Theorem 1 then establishes that there can be at most one crossing on
(bvk; bvk+1], and thus at most m crossings on (0; bvm]. Moreover, since Ri;j(v) = Fi;j(v)
there can be no crossing on (bvm; v). It must then be the case that Ri;j(v) < Fi;j(v)
for v 2 (bvm; v), because otherwise Ri;j would be increasing and diverge from Fi;j.
Finally, when c > 0 or Fi;j(v) = 1 for some v 2 (0; v), Ri;j must necessarily cross Fi;j
as we move left from v. The reason is that Ri;j(v) = 1 and that Ri;j is decreasing
below Fi;j (in Figure 1 any path that Ri;j can take crosses Fi;j between x2 and bv3).
Notice that if bidding strategies cross on an interval where bidder i is becoming

increasingly strong, then Ri;j crosses Fi;j from above. That is, bidder i would be more
aggressive than bidder j on the �rst portion of the interval, where his relative strength
is the smallest, and less aggressive towards the end, where his relative strength is
largest.
In summary, the bidding strategies of bidder i and bidder j cross at most m

times.18 If m = 0 (reverse hazard rate dominance) then Ri;j(v) < Fi;j(v) for all
v 2 (0; v), meaning that bidder j, who is weaker everywhere, bids more aggressively
than bidder i. Alongside Corollary 1, this is among the primary results of the existing
literature.

Corollary 2 (Su¢ cient Condition) If m = 0 (reverse hazard rate dominance)
then bidder j is consistently more aggressive than bidder i, i.e. bj(v) > bi(v) for all
v 2 (0; v).

17Hence, bidder j, who is weaker at the top, bids more aggressively than bidder i for high
valuations. This result was �rst established by Fibich et al (2002), who proved it by examining the
system of di¤erential equations. We add the observation that the bidder who is weak at the top is
also worse o¤ at the top, by the last part of Theorem 1.

18The standard approach can also be used to prove this fact, i.e. that bidding strategies coincide
at most once on any interval where Fi;j is strictly monotonic. However, many results, such as
Corollary 3 and Proposition 4 below, are more easily proven with the current approach.
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The last part of Theorem 2 has an important implication which is worth stating
explicitly. Speci�cally, we see that �rst order stochastic dominance (c = 0) is nec-
essary for one bidder to be consistently more aggressive than another. This insight
appears to be new to the literature.

Corollary 3 (Necessary Condition) If bidder j is consistently more aggressive
than bidder i then c = 0, i.e. Fi(v) < Fj(v) for all v 2 (0; v).

Corollary 3 means that �rst order stochastic dominance is necessary for the weak
bidder to be consistently more aggressive, but Corollary 2 suggests that it may not
be su¢ cient. The by now familiar arguments prove that if Fi;j ! 1 as v ! 0, then
Ri;j must cross Fi;j at least once. For example, if Fi < Fj in the interior (�rst order
stochastic dominance) but the densities are �nite and strictly positive and coincide
at v = 0, i.e. fi(0) = fj(0) 2 (0;1), then bidder i, the strong bidder, must be more
aggressive than the weak bidder for a set of types close to zero.19 This establishes a
whole class of situations in which it is not true that the weak bidder is always more
aggressive than the strong bidder.20

When m > 0 it is in speci�c cases often possible to make precise the number of
times the bid functions will cross. In particular, consider the possibility that Fi;j
oscillates around 1, in the sense that the peaks are alternatingly below and above 1,
and assume moreover that these peaks become less pronounced as we move to the
right. The following de�nition makes this more precise.

De�nition 1 Fi;j has the �diminishing wave property� if

(i) 1 < Fi;j(bvm) < Fi;j(bvm�2) < Fi;j(bvm�4):::;
(ii) 1 > Fi;j(bvm�1) > Fi;j(bvm�3) > :::; and
(iii) Fi;j is not both maximized and minimized on the interior (that is, Fi;j is max-

imized or minimized as v ! 0).

19By contradiction, if bidder i is consistently less aggressive than bidder j then Fi;j(v) > Ri;j(v)
for any v 2 (0; v), which implies the latter is decreasing. However, since Ri;j(v) > 1 for any
v 2 (0; v), Ri;j must necessarily intersect Fi;j as we move towards 0.

20Assume, for example, that Fj(v) = v+ :4v2(1� v2) and Fi(v) = v� :4v2(1� v2), v 2 [0; 1], in
which case Fi;j > 1 on the interior with Fi;j ! 1 as v ! 0. Fibich and Gavious (2003) use numerical
methods to derive expected revenue in this particular example (see their Table 1), but they do not
plot bidding strategies or comment on whether they intersect. Maskin and Riley (2000a, footnote
14) propose another example with the same property, fi(0) = fj(0), and point out that bidding
strategies must cross in that speci�c example. See also Section 6.
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Figure 2 (a) illustrates the shape we have in mind, while Figure 2 (b) and Figure
2 (c) give concrete examples.21 Notice that c = m (Fi;j always crosses 1 to the left
of a peak). In this case, Ri;j will cross Fi;j exactly m times, i.e. the upper bound
found in Theorem 2 is �binding�.

Proposition 4 If Fi;j has the diminishing wave property then Ri;j crosses Fi;j exactly
m times on (0; v):

Proof. Starting at v and moving left, Ri;j must cross Fi;j on (xm; bvm], by the
argument given in Theorem 2. At this crossing, Ri;j is, by assumption, between
Fi;j(bvm�1) and Fi;j(bvm�2) in value. Moving further to the left, Ri;j is above Fi;j
and thus increasing. Hence, it must cross Fi;j again somewhere on (bvm�2; bvm�1), at
which place Ri;j will take a value between Fi;j(bvm�3) and Fi;j(bvm�2). As we continue
leftward, Ri;j must intersect Fi;j once on each monotonic segment of Fi;j.
Similar arguments can be applied to the interval (bv1; v) in the example in Figure

1 since the �waves�are diminishing from bv1 onwards. Hence, bidding strategies must
cross twice on (bv1; v), as is depicted in Figure 1 (b).

Fi,j
1

v
_

(a)

Fi,j

5
(b)

Fi,j

v10
(c)

Figure 2: Stylized shape of diminishing waves, and two examples.

21In Figure 2(b), Fi = (v=5)
2, v 2 [0; 5], while Fj is a normal distribution with mean 3 and

standard deviation 1, truncated on [0; 5]. In Figure 2 (c), Fi(v) = (v=10)
2, v 2 [0; 10], and Fj(v) =

1
3 (G1(v) +G2(v) +G3(v)) where Gi is the cdf of a normal distribution with mean �i and standard
deviation �i, truncated on [0; 10], i = 1; 2; 3. Further, �i = 3i, while �1 = �2 = 1 and �3 = 0:25.
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4 Strong and weak bidders: Additional results

As mentioned, Corollary 1 and Corollary 2 are arguably the main results of the
current literature on asymmetric �rst price auctions. In this section we prove a
number of other known results, all of which assume �rst order stochastic dominance
or reverse hazard rate dominance. Speci�cally, we consider bidders�preferences for
di¤erent auction formats, as well as for the type of competition they face. Bids and
bid distributions are then compared to their counterparts in symmetric auctions. We
posit that the proofs o¤ered here are simpler than earlier proofs.
Assuming there are only two bidders, and maintaining the assumption that (12)

holds, or m = 0, Maskin and Riley (2000a) show that the strong bidder, bidder
i = 1, prefers the second price auction to the �rst price auction, but that the weak
bidder, bidder j = 2, feels the other way. In fact, this follows easily from Corollary
2. The reason is that it implies that q2(v) > F1(v) and q1(v) < F2(v) in the �rst
price auction. In contrast, since the second price auction is e¢ cient, bidder 2 with
valuation v would win such an auction with probability F1(v). Hence, the weak
bidder wins more often in the �rst price auction than in the second price auction,
while the opposite holds for the strong bidder. The result then follows from (3).22

Corollary 4 If n = 2 and m = 0 (reverse hazard rate dominance) the strong bidder
strictly prefers the second price auction to the �rst price auction, while the weak
bidder strictly prefers the �rst price auction to the second price auction.

Maskin and Riley (2000a, footnote 16) claim that the ranking holds for bidders
with high valuations even if (12) is replaced with the weaker assumption of �rst order
stochastic dominance, c = 0. Lemma 1 can be utilized to prove this.

Corollary 5 If n = 2 and c = 0 (�rst order stochastic dominance) the strong bidder
with valuation v strictly prefers the second price auction to the �rst price auction,
while the opposite holds for the weak bidder with valuation v. Moreover, b 2 (�2; �1).

Proof. By Proposition 3 and Lemma 1, q1(v) > F1(v) which implies

EU2(v) = EU1(v) =

Z v

0

q1(x)dx >

Z v

0

F1(x)dx;

22This argument also proves that the result extends to the case where there are more than one
weak bidder and one strong bidder (symmetric bidders must use symmetric equilibrium strategies).
Likewise, if there are more bidders, and these can be arranged according to (12), the weakest bidder
prefers the �rst price auction, and the strongest bidder the second price auction.
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where the term furthest to the right equals the expected payo¤ to a weak bidder
with valuation v in a second price auction. Thus, the weak bidder with valuation v
prefers the second price auction. Since he wins with probability one in either auction,
his expected payment in a second price auction, �1, must be less than his expected
payment in a �rst price auction, b. Next, the second part of Lemma 1 implies that

EU1(v) = EU2(v) =

Z v

0

q2(x)dx <

Z v

0

F2(x)dx;

where the last term equals the expected payo¤ to a strong bidder with valuation v
in a second price auction. An argument similar to that given before leads to the
conclusion that b exceeds the expected valuation of the weak bidder, �2.
As we have seen, the weak bidder may be more aggressive than the strong bidder.

This raises the question of whether the strong bidder is better o¤ facing a weak, but
aggressive bidder, rather than another strong bidder, with the same distribution
function as himself. Despite the aggressiveness, we show next that both a weak
and a strong bidder prefer facing a weak rather than a strong bidder. Let Fs and
Fw denote two distribution functions, the �rst of which �rst order stochastically
dominates the latter.

Corollary 6 Assume n = 2, Fs(v) < Fw(v) for all v 2 (0; v), and bidder i draws
his valuation from either Fs or Fw. Regardless of whether bidder i is weak or strong
himself, he is better o¤ facing a weak rather than a strong rival. That is, bidder i
with valuation v, v 2 (0; v], is strictly better o¤ if bidder j, j 6= i, draws his valuation
from Fw rather than Fs.23

Proof. First, assume that bidder i is strong, Fi = Fs. Then, we have already
established that qi(v) > Fs(v) for all v 2 (0; v) if Fj = Fw. On the other hand,
qi(v) = Fs(v) for all v 2 (0; v) if Fj = Fs, which follows from the fact that symmetric
bidders bid symmetrically. Hence, for all v 2 (0; v), bidder i wins more often in
equilibrium if bidder j is weak rather than strong. By (3), he is strictly better o¤
facing a weak bidder.
Next, consider the possibility that bidder i is weak, Fi = Fw. To begin, assume

bidder j is strong, Fj = Fs. In this case, bidder i�s winning probability, qw(v), is less
than Fw(v) (Lemma 1). On the other hand, if bidder i were to face another weak
bidder he would win with probability Fw(v). Again, the result follows from (3).

23This result also holds in the second price auction. It can also be extended to the case with
n�1 bidders of the same kind (weak or strong), who would prefer the remaining bidder to be weak.
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This result is related to a result in Lebrun (1998), who shows that if one bidder
becomes much stronger, the other bidder is worse o¤. That is, Lebrun (1998) assumes
m = 0 rather than c = 0.
Maskin and Riley (2000a) also compare bids and bid distributions in the asym-

metric auction with their counterparts in a symmetric auction where both bidders
draw valuations from the same distribution. The above corollaries will allow us to
easily reproduce their results in the following.24

Let �s(b) and �w(b) denote the distributions of bids in a symmetric auction
where both bidders are strong or weak (they both draw from Fs or Fw), respectively.
Following the earlier notation, let ps(b) and pw(b) denote the distribution of bids in
the asymmetric auction where one bidder is strong, the other is weak. The following
Corollary proves that these distributions relate as in Figure 3.

Corollary 7 Assume n = 2 and m = 0 (reverse hazard rate dominance). Bid
distributions can be ranked according to �rst order stochastic dominance. Speci�cally,
�s dominates ps, which dominates pw, which in turn dominates �w.

Proof. Given Corollary 4, in an asymmetric environment the weak bidder is better
o¤ in a �rst price auction than in a second price auction. In a second price auction he
would win with probability Fs(v), which coincides with the probability with which
he would win in a �rst price auction if he himself was also strong (and the bidders
therefore symmetric). In light of (3), this leads to the conclusion that in a �rst price
auction the bidder is better o¤, for a �xed valuation, against a strong bidder if that
rival believes the �rst bidder is weak (in which case the winning probability exceeds
Fs(v)) rather than strong (where the winning probability is Fs(v)). In other words,
the bidder is better o¤ facing the distribution of bids ps than �s (these summarize
how the strong rival would react to the di¤erent beliefs). This implies that �s �rst
order stochastically dominates ps; if it did not, the bidder could ensure himself a
higher payo¤ when facing �s simply by duplicating his own strategy when facing
ps. A similar thought experiment involving the strong bidder shows that pw must
�rst order stochastically dominate �w. It remains to show that ps dominates pw.
However, this has already been established, in Corollary 1.
Given Corollary 7 or Figure 3 it is also possible to rank bidders�bids in the three

di¤erent environments (two weak, two strong, or one of each).

Corollary 8 Assume n = 2 and m = 0. Regardless of whether a bidder is weak or
strong himself, he bids more aggressively if facing a strong rather than a weak rival.

24Corollaries 7 and 8 combine Propositions 3.3 and 3.5 in Maskin and Riley (2000a). See also
Lebrun (1998).
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Proof. Fix a valuation of the weak bidder, say, and locate the corresponding prob-
ability, Fw(v), on the vertical axis in Figure 3. Since pw is further to the right than
�w, we conclude that the weak bidder bids more aggressively if he faces a strong
bidder (in which case pw describes his response) rather than a weak bidder (when
�w describes his response). Reproducing the argument for the strong bidder shows
that he responds in the same way.

-

6�i; pi

Fw(v)

bw(v) �w �s

�w �s

pw
ps

b

1

b

Figure 3: Bid distributions in di¤erent competitive environments.

5 Beyond �rst order stochastic dominance

The standard assumption in theoretical work is that c = 0 (�rst order stochastic
dominance), often supplemented with the stronger monotonicity condition that m =
0 (reverse hazard rate dominance).25 In this section we consider situations where Fi;j
is less well-behaved. We start with a brief discussion of the assumptions in numerical
work, where neither monotonicity nor �rst order stochastic dominance is necessarily
assumed. In this regard, our focus is on bidding strategies, though it must be pointed
out that numerical methods are also used e¤ectively to compute expected revenue.

25As mentioned, Fibich. et al. (2002) study bidding strategies near the top without the assump-
tion of �rst order stochastic dominance. Kaplan and Zamir (2007) examine bidding strategies when
bidders draw valuations from di¤erent uniform distributions, in which case �rst order stochastic
dominance may not hold either. Hopkins (2007) does not assume �rst order stochastic dominance,
but his new result requires the support of di¤erent bidders to be di¤erent in a rather speci�c way
(see Section 6).
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In the �rst paper to use numerical methods, Marshall et al (1994) assume bidders
draw valuations from di¤erent power distributions. In this case Fi;j is particularly
well-behaved, as c = m = 0. Hence, bidding strategies do not cross. Later papers
have examined other types of asymmetry.
More concretely, Bajari (2001) and Li and Riley (2006) assume bidders draw valu-

ations from di¤erent truncated normal distributions.26 Gayle and Richard (2005) give
examples where bidders draw valuations either from di¤erent truncatedWeibull dis-
tributions or di¤erent truncated log-normal distributions. Gayle and Richard (2005)
explicitly point out that bidding strategies may cross. However, it turns out that
all existing classes of numerical examples of asymmetry in �rst price auctions share
a common feature; m is at most one.27 Therefore, with the speci�cations currently
being used in numerical work, bidding strategies will be found to cross at most once.
As we discuss in Section 6, this result depends on the assumption of a common
support, which is also typically used in numerical work.

Proposition 5 Bidding strategies will cross at most once if bidder i and bidder
j draw valuations from di¤erent power distributions, normal distributions, Weibull
distributions, or log-normal distributions.

Proof. It is necessary to show only that m � 1. It is straightforward (and therefore
omitted) to show that fj=fi has at most one interior peak in all the above examples.
As observed by e.g. Hopkins and Kornienko (2007) this in turn implies that Fi;j has
at most one interior peak.
Notice that in all the aforementioned examples, both bidders draw from distri-

butions of the same type. However, as Figure 2 (b) and Proposition 4 illustrate, if
bidders draw from di¤erent types of distributions, e.g. one from a power distribution
and the other from a normal distribution, Fi;j may have more peaks and bidding
strategies may cross more times.
In the following we relax the assumption of �rst order stochastic dominance, or

c = 0 (the distribution functions do not cross). We assume there are exactly two
bidders, with bidder i = 1 being the bidder who is stronger near the top.
We argue that once �rst order stochastic dominance (FOSD) is well under-

stood the natural next step would be to consider second order stochastic domi-

26Li and Riley (2006) also consider uniform distributions (a special case of power distributions).
They have developed the freely available program BIDCOMP2 , which allows the user to estimate
bidding strategies when bidders draw valuations either from di¤erent power distributions or from
di¤erent normal distributions.

27Fibich et al (2002) and Fibich and Gavious (2003) examine a few other examples, but there is
little to unify these.
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nance (SOSD). Notice that SOSD encompasses FOSD (the latter implies the for-
mer). Hence, when we refer to SOSD we need to keep in mind that FOSD may or
may not be satis�ed. The new and interesting case is when SOSD is satis�ed, but
FOSD is not (c > 0).
By de�nition, F2 second order stochastically dominates F1 ifZ v

0

F1(x)dx >

Z v

0

F2(x)dx for all v 2 (0; v). (18)

Notice that due to the convention that bidder 1 is strong near the top, it is now
F2 that stochastically dominates F1. Speci�cally, F2 second order stochastically
dominates F1, although F2 does not �rst order stochastically dominate F1 because
F1 dips below F2 for su¢ ciently high valuations (c > 0).
(18) holds with equality at v if and only if �2 = �1, in which case F1 is a mean

preserving spread over F2. Hence, this type of asymmetry can be used to describe
situations where bidder 1 is �unpredictable�and bidder 2 �predictable�; it is more
di¢ cult to �guess�the valuation of bidder 1 than that of bidder 2 even though the
expected valuations are identical. For instance, it is easily shown that F1 has a higher
variance than F2. Likewise, F1 has more mass at the tails than F2.
The following is a compelling example of this type of asymmetry: Bidders draw

valuations from di¤erent normal distributions, truncated on [0; v], with the com-
mon mean �1 = �2 =

1
2
v. The di¤erence is that the distribution from which the

unpredictable bidder draws his valuation has larger variance than the distribution
from which the predictable bidder draws his valuation, �1 > �2. In this example,
m = c = 1, �1 = �2, and (18) holds.
If (18) does not hold with equality at v then �2 > �1. Nevertheless, F1 has more

mass at the tails than F2, i.e. bidder 1 is more likely to have valuations that are
extreme (high or low).
Given SOSD holds but FOSD does not, we conclude that bidding strategies must

cross, as c > 0 (Theorem 2). They cross exactly once if m = 1. Moreover, bidder
1 is better o¤ than bidder 2 for high valuations, since he is stronger near the top
(Theorem 1). However, since �2 � �1, bidder 2 is better o¤ for a set of valuations
(Lemma 2).
Since neither bidder is consistently better o¤ bid distributions must cross (Propo-

sition 2). This is a new result, and should be contrasted with the fact that bid
distributions do not cross under FOSD (Corollary 1).28

With more �regularity assumptions� on the shape of Fi;j we can make more
precise predictions regarding the relationship between the two bid distributions.

28However, Hopkins (2007) contains a related result, which we discuss in Section 6.
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Proposition 6 Assume n = 2 and that F2 second order stochastically dominates
F1, yet �rst order stochastic dominance does not apply. Then (i) bid distributions,
p1 and p2, must cross on (0; b), and (ii) if c = 1 then p1 has more mass at the tails
than p2, i.e. the bidder who is more likely to have extreme valuations is also more
likely to submit extreme bids. Moreover, if (iii) m = c = 1 then p2(b)=p1(b) is single
peaked and crosses 1 exactly once, like F1;2.

Proof. The �rst part follows from Proposition 2. For the second part, notice that
there is a unique valuation for which the two bidders are equally well o¤ when c = 1
(Theorem 1). Since bidder 1 is better o¤ near the top, Proposition 2 implies that
p1(b) < p2(b) when b is close to b. The opposite holds for bids close to zero since
bidder 2 is better o¤ near the bottom. To prove the third part, with m = 1, it is
probably easiest to revert back to the standard approach to asymmetric �rst price
auctions. As in Maskin and Riley (2000a), it can be established that the derivative
of p2(b)=p1(b) is proportional to

�
b�11 (b)� b

��1� (b�12 (b)� b)�1, which is zero exactly
once since bidding strategies coincide exactly once. Hence, the ratio has a unique
stationary point; it is single-peaked.29 Thus, there is a unique bid at which the ratio
is one.
Given (18), notice that bidder 2 would be consistently better o¤ than bidder 1 in

a second price auction, but this is not the case in a �rst price auction where bidder
1 is better o¤ near the top. Hence, the auction format in�uences which bidder is
better o¤. It should be pointed out that this is not the case when comparing strong
and weak bidders, where the strong bidder is consistently better o¤ in both auctions.
In auctions with weak and strong bidders it was possible, from the bidders� point

of view, to rank the �rst price auction and the second price auction as well as the
type of competition they face.
Here, with predictable and unpredictable bidders, we are able to rank auctions at

the bottom, i.e. for low valuations. We assume m = c = 1. Then, if v is su¢ ciently
low, the unpredictable bidder, bidder 1, prefers a �rst price auction to a second price
auction, while the opposite holds for the predictable bidder. This follows from the
fact that b1 > b2 when v is small, implying that bidder 1 wins more often in a �rst
price auction than in a second price auction, q1(v) > F2(v), and vice versa for bidder
2.
Regarding a ranking for all valuations, at least one of the bidders will consistently

prefer one auction to the other, but it is possible that the other bidder�s preference

29The same argument shows that if c = m = 0 (reverse hazard rate dominance), then p2=p1 is
strictly decreasing. More generally, if F1;2 has the �diminishing wave�property in Proposition 4,
then p2=p1 has exactly m stationary points.
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depends on his valuation. Since b2 > b1 if v is high, or q1 < F2, the �rst price
auction becomes less attractive relative to the second price auction for bidder 1 as
the valuation increases (and vice versa for bidder 2).
The only reason a global ranking is not possible is because it has proven impossible

to pinpoint the value of b and thereby payo¤ at the top, EUi(v) = v � b. Recall
that in a second price auction bidder i�s payo¤ at the top is v � �j, j 6= i. Hence,
to compare payo¤ at the top we need to compare b with �1 and �2. A natural
conjecture is that the last part of Corollary 5 generalizes. In fact, in all known
numerical examples it is true that the maximal bid is between the two expected
values. In this case, �2 � b � �1 would imply that bidder 1 with valuation v would
weakly prefer the �rst price auction, while bidder 2 with valuation v would weakly
prefer the second price auction. This, in turn, would imply that bidder 1 prefers
the �rst price auction for all v 2 (0; v), while bidder 2 would prefer the second price
auction for all v 2 (0; v). Likewise, bidders would also prefer facing an unpredictable
rather than a predictable bidder. Thus, establishing whether it is generally true,
with two bidders, that the maximal bid falls between the expected values would lead
to several new auxiliary results. We propose this as future research topic.

Example 1: Gayle and Richard (2005) use numerical methods to examine a situation
where bidders draw valuations from the Weibull distributions

F1(v) =
1� e�(

v
1:5)

0:5

1� e�(
4
1:5)

0:5 ; F2(v) =
1� e�(

v
1:11)

1:5

1� e�(
4

1:11)
1:5

for v 2 [0; 4]. In this example it is easily veri�ed that m = c = 1 and that the
expected values are approximately �1 � 0:84 < 0:998 � �2. Together, these prop-
erties imply SOSD and the results discussed above. Gayle and Richard�s (2005)
simulations con�rm our theoretical result that bidding strategies will cross exactly
once. However, they calculate neither payo¤ nor bid distributions, so in this case
the theoretical results are more plentiful than the numerical results. It is, however,
apparent from their analysis that b 2 (�1; �2). �

6 Di¤erent support

So far, we have assumed that all bidders share the same support. Relaxing this
assumption is di¢ cult if there are several bidders, because it then becomes possible
that not all bidders will have the same highest possible bid. However, with exactly
two bidders the assumption of a common support is less important because both
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bidders must share a common maximal bid. Thus, we assume there are two bidders,
and that bidder i�s valuation is in the support [vi; vi], i = 1; 2.
We assume that v1 > v2 and that there is some overlap of the supports, v1 < v2.

As before, de�ne R1;2(v) = F2(v)=F1(v) on the shared support of F1 and F2, (v; v2],
where v = maxfv1; v2g.
Maskin and Riley (2000a) and Hopkins (2007) show that when a bidder�s val-

uation falls in the interval (v; v2] his bid is strictly increasing in his valuation and
that he wins with strictly positive probability.30 Hence, Lemma 3 is valid on (v; v2].
We let b denote the lower end-point of the support of the winning bid. That is, the
winning bid falls in the interval [b; b].
Notice that EU2(v2) = v2 � b. However, bidder 1 with valuation v2 is better o¤,

since he could earn the same payo¤ by imitating bidder 2. After all, a bid of b wins
with probability one. Hence, R1;2(v2) > 1. Further, since bidder 1 with valuation v2
bids less than bidder 2 with valuation v2, i.e. bids below b, it must be the case that
R1;2(v2) < F1;2(v2). Notice that F1;2(v2) > 1 since F2(v2) = 1 > F1(v2).
In conclusion R1;2(v2) lies between 1 and F1;2(v2), and Lemma 3 applies to valu-

ations in the shared support, (v; v2]. Hence, the arguments in Section 3 can be used
on valuations in (v; v2].
For example, Figure 4 highlights that Corollary 3 remains true. That is, if

F1;2(v) = 1 for some v 2 (v; v2] then R1;2 and F1;2 must cross, implying bidding
strategies must cross. In Figure 4, as we move leftward from v2, the decreasing
function R1;2 must intersect F1;2 to the right of xc.
In the following we consider the two cases that have received the most attention

in the literature, v1 = v2 and v1 < v2, respectively.

F

R

1,2

1,2

1

.382
(a) Maskin & Riley (2000a)

F1,2

4
(b) Weibull distributions

F1,2

R1,2

31 2 v

(c) Kaplan & Zamir (2007)

Figure 4: Three examples with di¤erent supports.

30If v1 6= v2 and v is su¢ ciently below v, the bidder bids below b and never wins.
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6.1 Same lower end-point; v1 = v2
Plum (1992) and Cheng (2006) consider situations where bidders draw valuations
from di¤erent power distributions with a common lower bound. Given their assump-
tions, bidding strategies do not cross. Maskin and Riley (2000a, footnote 14), on the
other hand, consider an example where

F1(v) = 3v � 2v2, v 2 [0; 0:5] , F2(v) = 3v � v2, v 2 [0; 0:5(3�
p
5)]:

In this case, v1 > v2 � :382 and v1 = v2 = 0. Notice that F1;2(0) = 1. Even
though F1 �rst order stochastically dominates F2, it is nevertheless the case that F2
dominates F1 in terms of the reverse hazard rate on the shared support, [0; v2]. In
other words, F1;2 is above one, and increasing, on (0; v2]. See Figure 4 (a).
Although F1;2 is monotonic on (0; v2] it is not the case that one bidder bids

consistently more aggressively than another on (0; v2]. The reason is the �gap�
between F1;2(v2) and 1 �the distribution of the bidder who is ostensibly �weaker�
in the reverse hazard rate sense, bidder 1, has an extended support. Since 1 <
R1;2(v2) < F1;2(v2), it must be the case that R1;2 intersects F1;2 exactly once as we
move leftward. Hence, bidder 1 bids more aggressively for small valuations, while
bidder 2 bids more aggressively for large valuations. In fact, whenever f1(0) =
f2(0) 2 (0;1), bidding strategies must coincide somewhere on the interior, in line
with the discussion following Corollary 3.
Notice that if F1 is truncated on the smaller support [0; v2] then bidder 1 would

in fact be weaker everywhere and F1;2 would be strictly increasing (the truncation
leads F1;2(0) to fall below 1). Hence, bidder 1 would be consistently more aggressive
than bidder 2. However, when the upper end-point of the support is extended, the
number of times the bidding strategies crosses increases by one, from zero to one.
The same remark applies to Proposition 5. Consider, for example, the slight

variation of Example 1, where

F1(v) =
1� e�(

v
1:11)

1:5

1� e�(
v1
1:11)

1:5 , F2(v) =
1� e�(

v
1:5)

0:5

1� e�(
4
1:5)

0:5 ;

and v1 = v2 = 0, v1 > v2 = 4. Compared to Example 1, one bidder�s support
is extended to the right (the identities of bidders have been reversed compared to
Example 1, because the change in support changes who is stronger near the top). As
v1 increases, F1;2 shifts up on the shared support, [0; 4]. Figure 4 (b) shows the �nal
result. Given the analysis in Section 3 and the fact that 1 < R1;2(v2) < F1;2(v2), it is
clear that R1;2 will intersect F1;2 twice on [0; 4]. Hence, bidding strategies cross twice.
Proposition 5 and Theorem 2 relies on a common support; extending the upper end-
point of one bidder�s support adds the possibility of exactly one additional crossing.
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6.2 Denser support; v1 > v2 > v2 > v1
Kaplan and Zamir (2007) analytically solve for bidding strategies when bidders draw
valuations from di¤erent uniform distributions. One of their key examples is the
following,

F1(v) =
v

4
; v 2 [0; 4], F2(v) =

v � 1
2
; v 2 [1; 3].

In this case bidder 1 is stronger near the top, v1 > v2, but the distribution functions
cross at v = 2. See Figure 4 (c). Notice that F1;2 is strictly increasing on [1; 3]. The
previous analysis clearly proves that bidding strategies must cross exactly once on
this interval. Notice that this example is somewhat related to the analysis in Section
5. In particular, bidder 1 in Kaplan and Zamir�s (2007) example is in some sense
more unpredictable than bidder 2.
In fact, Kaplan and Zamir (2007) imposes a minimum bid (reserve price) of two,

and �nd that bidding strategies cross once. Again, this is consistent with Figure 4
(c). The minimum bid e¤ectively excludes bidders with valuation below 2, but since
F1;2(2) = 1 the result follows.31

Hopkins (2007) also consider cases in which one bidder�s support is strictly within
the support of another bidder. His focus is on bid distributions rather than the bid-
ding strategies. By imposing conditions on the �dispersion�of the two distributions,
he shows that bid distributions cross exactly once. In fact, his motivating example
is the uniform distribution centered around the same mean, as in Kaplan and Zamir
(2007).
This result nicely complements our Proposition 6, which also deals with cases

where one distribution is in some sense more dispersed than another. For complete-
ness, we prove a version of Hopkins�(2007) result here. First, we add the comment
that given that v1 > v2 > v2 > v1 the bid distributions must cross at least once.
Second, we give di¤erent conditions under which Hopkins�(2007) result that they
cross exactly once holds true. Notice the similarity to Proposition 6.

Proposition 7 Assume v1 > v2 > v2 > v1. Then, bid distributions cross at least
once on (b; b) and p1 has more mass at the tails than p2. Moreover, if m � 1 on
(v2; v2] then p2(b)=p1(b) is single peaked and crosses 1 exactly once.

Proof. As Maskin and Riley (2000a) and Hopkins (2007) point out, bidder 2 with
valuation v2 bids b, implying that p2(b) = 0 < p1(b), where the inequality follows
from the fact that bidder 1 submits bids with no chance of winning if his type

31Lemma 3 applies to the interval (2; 3] since bids are strictly increasing in valuation here (there
is no mass of types bidding the minimum bid).
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is su¢ ciently low. Moreover, as in the proof of Proposition 6, the derivative of
p2(b)=p1(b) is proportional to

�
b�11 (b)� b

��1 � (b�12 (b)� b)�1. At bids above b1(v2),
b�11 is larger than v2 which in turn is larger than b�12 , implying the derivative is
negative for b � b1(v2). Thus, p2(b) > p1(b) when b is large. Hence, p1 and p2 must
cross and p1 must have more mass at the tails than p2. If m � 1 bidding strategies
cross exactly once on (v2; v2] (remember that F1;2(v2) > 1 and F1;2(v2) = 0, so any
peak occurs where F1;2 > 1). Hence, the derivative changes sign exactly once between
b and b1(v2). In other words, p2(b)=p1(b) is single-peaked, meaning p2(b)=p1(b) = 1
exactly once.

7 Conclusion

In this paper we o¤ered a new approach to the analysis of asymmetric �rst price
auctions. Rather than looking at the system of di¤erential equations determining
bidding strategies, we started by comparing bidders�payo¤s. This, in turn, allowed
us to compare the distribution of bids submitted by various bidders, as well at the
actual bidding strategies themselves.
The asymmetry between the bidders was permitted to take more general forms

than those usually considered in the theoretical and numerical literature. Conse-
quently, the most important existing results followed as corollaries of the two main
results. In fact, we supplied new and simpler proofs of most existing theoretical
results, and argued that the numerical research has been limited to a speci�c class
of asymmetry.
More generally, we showed that the properties of the ratio of the distribution

functions that describe beliefs can be used to derive upper bounds on the number
of times bidders� expected payo¤s and bidding strategies intersect. We described
a class of situations in which the number of times bidding strategies cross can be
precisely determined.
Given the focus on �rst order stochastic dominance in the current literature, we

argued that the natural next step would be to more precisely characterize behavior
in situations described by second order stochastic dominance. In the two-bidder case
we showed that when second order, but not �rst order, stochastic dominance applies,
payo¤s and bidding strategies must necessarily cross, as must the distribution of bids.
We would also argue that an additional advantage of the approach suggested

here is that it can be presented in easily digestible �gures, implying that most of the
arguments are visually obvious.
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